5,390 research outputs found

    Antenna and radome loss measurements for MFMR and PMIS with appendix on MFMR/PMIS computer programs

    Get PDF
    The NMSU/PSL radiometer antenna calibration facility is described, and the antenna and radome loss measurements made on the passive microwave imaging system and the multifrequency microwave radiometer are summarized. Antenna/radome data reduction techniques, estimation of sky brightness temperatures, and bucket performance tests are presented along with radiometer computer programs

    Global Assimilation of Loon Stratospheric Balloon Observations and Their Trajectories Relative to Tropical Waves

    Get PDF
    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. During May through December 2016 Loon balloons were often able to remain near the equator by selectively adjusting the Loon altitude. Our results based on global wind analyses show that the expected mean poleward motion from the Brewer-Dobson circulation can be circumvented by vertically adjusting the Loon altitudes with the phasing with the meridional wind of equatorial Rossby waves, allowing the Loon balloons to remain in the tropics

    Infrared Radiative Forcing and Atmospheric Lifetimes of Trace Species Based on Observations from UARS

    Get PDF
    Observations from instruments on the Upper Atmosphere Research Satellite (UARS) have been used to constrain calculations of infrared radiative forcing by CH4, CCl2F2 and N2O, and to determine lifetimes Of CCl2F2 and N2O- Radiative forcing is calculated as a change in net infrared flux at the tropopause that results from an increase in trace gas amount from pre-industrial (1750) to contemporary (1992) times. Latitudinal and seasonal variations are considered explicitly, using distributions of trace gases and temperature in the stratosphere from UARS measurements and seasonally averaged cloud statistics from the International Satellite Cloud Climatology Project. Top-of-atmosphere fluxes calculated for the contemporary period are in good agreement with satellite measurements from the Earth Radiation Budget Experiment. Globally averaged values of the radiative forcing are 0.536, 0.125, and 0.108 W m-2 for CH4, CCl2F2, and N2O, respectively. The largest forcing occurs near subtropical latitudes during summer, predominantly as a result of the combination of cloud-free skies and a high, cold tropopause. Clouds are found to play a significant role in regulating infrared forcing, reducing the magnitude of the forcing by 30-40% compared to the case of clear skies. The vertical profile of CCl2F2 is important in determining its radiative forcing; use of a height-independent mixing ratio in the stratosphere leads to an over prediction of the forcing by 10%. The impact of stratospheric profiles on radiative forcing by CH4 and N2O is less than 2%. UARS-based distributions of CCl2F2 and N2O are used also to determine global destruction rates and instantaneous lifetimes of these gases. Rates of photolytic destruction in the stratosphere are calculated using solar ultraviolet irradiances measured on UARS and a line-by-line model of absorption in the oxygen Schumann-Runge bands. Lifetimes are 114 +/- 22 and 118 +/- 25 years for CCl2F2 and N2O, respectively

    Object Repetition Leads to Local Increases in the Temporal Coordination of Neural Responses

    Get PDF
    Experience with visual objects leads to later improvements in identification speed and accuracy (“repetition priming”), but generally leads to reductions in neural activity in single-cell recording studies in animals and fMRI studies in humans. Here we use event-related, source-localized MEG (ER-SAM) to evaluate the possibility that neural activity changes related to priming in occipital, temporal, and prefrontal cortex correspond to more temporally coordinated and synchronized activity, reflected in local increases in the amplitude of low-frequency activity fluctuations (i.e. evoked power) that are time-locked to stimulus onset. Subjects (N = 17) identified pictures of objects that were either novel or repeated during the session. Tests in two separate low-frequency bands (theta/alpha: 5–15 Hz; beta: 15–35 Hz) revealed increases in evoked power (5–15 Hz) for repeated stimuli in the right fusiform gyrus, with the earliest significant increases observed 100–200 ms after stimulus onset. Increases with stimulus repetition were also observed in striate/extrastriate cortex (15–35 Hz) by 200–300 ms post-stimulus, along with a trend for a similar pattern in right lateral prefrontal cortex (5–15 Hz). Our results suggest that experience-dependent reductions in neural activity may affect improved behavioral identification through more coordinated, synchronized activity at low frequencies, constituting a mechanism for more efficient neural processing with experience

    Parity-Violating Interaction Effects in the np System

    Full text link
    We investigate parity-violating observables in the np system, including the longitudinal asymmetry and neutron-spin rotation in np elastic scattering, the photon asymmetry in np radiative capture, and the asymmetries in deuteron photo-disintegration d(gamma,n)p in the threshold region and electro-disintegration d(e,e`)np in quasi-elastic kinematics. To have an estimate of the model dependence for the various predictions, a number of different, latest-generation strong-interaction potentials--Argonne v18, Bonn 2000, and Nijmegen I--are used in combination with a weak-interaction potential consisting of pi-, rho-, and omega-meson exchanges--the model known as DDH. The complete bound and scattering problems in the presence of parity-conserving, including electromagnetic, and parity-violating potentials is solved in both configuration and momentum space. The issue of electromagnetic current conservation is examined carefully. We find large cancellations between the asymmetries induced by the parity-violating interactions and those arising from the associated pion-exchange currents. In the np capture, the model dependence is nevertheless quite small, because of constraints arising through the Siegert evaluation of the relevant E1 matrix elements. In quasi-elastic electron scattering these processes are found to be insignificant compared to the asymmetry produced by gamma-Z interference on individual nucleons.Comment: 65 pages, 26 figures, submitted to PR

    Voltage control of nuclear spin in ferromagnetic Schottky diodes

    Full text link
    We employ optical pump-probe spectroscopy to investigate the voltage dependence of spontaneous electron and nuclear spin polarizations in hybrid MnAs/n-GaAs and Fe/n-GaAs Schottky diodes. Through the hyperfine interaction, nuclear spin polarization that is imprinted by the ferromagnet acts on conduction electron spins as an effective magnetic field. We demonstrate tuning of this nuclear field from <0.05 to 2.4 kG by varying a small bias voltage across the MnAs device. In addition, a connection is observed between the diode turn-on and the onset of imprinted nuclear polarization, while traditional dynamic nuclear polarization exhibits relatively little voltage dependence.Comment: Submitted to Physical Review B Rapid Communications. 15 pages, 3 figure

    Cumulative and Differential Effects of Early Child Care and Middle Childhood Out-of-School Time on Adolescent Functioning.

    Get PDF
    Effects associated with early child care and out-of-school time (OST) during middle childhood were examined in a large sample of U.S. adolescents (N&nbsp;=&nbsp;958). Both higher quality early child care AND more epochs of organized activities (afterschool programs and extracurricular activities) during middle childhood were linked to higher academic achievement at age 15. Differential associations were found in the behavioral domain. Higher quality early child care was associated with fewer externalizing problems, whereas more hours of early child care was linked to greater impulsivity. More epochs of organized activities was associated with greater social confidence. Relations between early child care and adolescent outcomes were not mediated or moderated by OST arrangements in middle childhood, consistent with independent, additive relations of these nonfamilial settings

    Prefrontal Cortex Modulation during Anticipation of Working Memory Demands as Revealed by Magnetoencephalography

    Get PDF
    During the anticipation of task demands frontal control is involved in the assembly of stimulus-response mappings based on current goals. It is not clear whether prefrontal modulations occur in higher-order cortical regions, likely reflecting cognitive anticipation processes. The goal of this paper was to investigate prefrontal modulation during anticipation of upcoming working memory demands as revealed by magnetoencephalography (MEG). Twenty healthy volunteers underwent MEG while they performed a variation of the Sternberg Working Memory (WM) task. Beta band (14–30 Hz) SAM (Synthetic Aperture Magnetometry) analysis was performed. During the preparatory periods there was an increase in beta power (event-related synchronization) in dorsolateral prefrontal cortex (DLPFC) bilaterally, left inferior prefrontal gyrus, left parietal, and temporal areas. Our results provide support for the hypothesis that, during preparatory states, the prefrontal cortex is important for biasing higher order brain regions that are going to be engaged in the upcoming task

    Kinetics of isothermal and non-isothermal precipitation in an Al-6at%Si alloy

    Get PDF
    A novel theory which describes the progress of a thermally activated reaction under isothermal and linear heating conditions is presented. It incorporates nucleation, growth and impingement and takes account of temperaturedependent solubility. The model generally fits very well to isothermal calorimetry and differential scanning calorimetry data on precipitation in an Al-6 at.% Si alloy. Analysis of the data shows that two processes occur in this precipitation reaction: growth of large Si particles and growth of pre-existing small nuclei. Determination of the sizes of Si precipitates by transmission electron microscopy indicates that interfacial energy contributions are small and have a negligible influence on solubilit

    Exchange-coupling constants, spin density map, and Q dependence of the inelastic neutron scattering intensity in single-molecule magnets

    Full text link
    The Q dependence of the inelastic neutron scattering (INS) intensity of transitions within the ground-state spin multiplet of single-molecule magnets (SMMs) is considered. For these transitions, the Q dependence is related to the spin density map in the ground state, which in turn is governed by the Heisenberg exchange interactions in the cluster. This provides the possibility to infer the exchange-coupling constants from the Q dependence of the INS transitions within the spin ground state. The potential of this strategy is explored for the M = +-10 -> +- 9 transition within the S = 10 multiplet of the molecule Mn12 as an example. The Q dependence is calculated for powder as well as single-crystal Mn12 samples for various exchange-coupling situations discussed in the literature. The results are compared to literature data on a powder sample of Mn12 and to measurements on an oriented array of about 500 single-crystals of Mn12. The calculated Q dependence exhibits significant variation with the exchange-coupling constants, in particular for a single-crystal sample, but the experimental findings did not permit an unambiguous determination. However, although challenging, suitable experiments are within the reach of today's instruments.Comment: 11 pages, 6 figures, REVTEX4, to appear in PR
    corecore